this post was submitted on 20 Jun 2023
52 points (100.0% liked)
Technology
37735 readers
55 users here now
A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I wrote my Bachelor's thesis on the software that runs 5G networks.
4G (speaking about LTE) has been wildly successful since its introduction in 2009. It replaced the circuit switched network used in 2G and 3G with Evolved Packet Core, a network that delivered network packets directly to the phone using real IP addresses.
Now, a decade after 4G's release, technology has progressed a lot. What telecom companies call 5G are a collection of new technologies that are all coming out around the same time, but are mostly compatible with existing 4G phones and networks.
The big new technology is "5G new radio" (5G NR), which is a new optimized radio protocol that allows for faster speeds, lower power consumption, and the ability to use new extremely high bandwidth frequencies in the 50-400GHz range, on top of the existing 600-6000MHz range. Cellphones say that they're connected to 5G when they start speaking with the 5G NR protocol. I believe telecom companies can support 5G NR just by upgrading the cell tower antennas.
These newer antennas supporting this new radio protocol are also being built with beamforming tech, which allows towers to electronically "point" the antennas at nearby phones, improving signal.
Finally, the big upgrade underneath the surface is the migration to virtualize network functions, which is allowing telecom companies to run their networks using flexible lightweight computers inside the towers, instead of big bulky pre-built appliances in some big datacenter. This makes the network backbones faster, easier to program, and makes them cheaper for telecom companies to build out.
Wikipedia gives a bit of a summary about these features here:
https://en.wikipedia.org/wiki/5G#Technology
Thank you so much!
The part about beamforming also has another side effect that all the conspiracy theorists won't like. Although they can likely spin this in some other sinister way. Beamforming allows for essentially less electromagnetic pollution than previous Generations. Because it directs the energy more directly where it's needed instead of just broadcasting it everywhere. Way more efficient. Although I can already see how the Conspiracy nuts start shouting that this will be used to shoot concentrated beams of 5G on the enlightened people...
The funny thing is that beamforming isn't some laser that the tower can aim at people with.
The technique for tuning a beamforming signal is to see which antennas a signal is coming on (on your 100 antenna array), and then boost the gain/match the phase on those antennas to match. It's just linear algebra, not a cannon.
Also most wifi routers do beamforming, and apparently it's not new to 5g either. I think the new antennas are just better at it, using more antennas to make it more directional, and using better algorithms to make it faster and avoid interference better.