this post was submitted on 10 May 2024
50 points (100.0% liked)

Technology

37742 readers
73 users here now

A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.

Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.

Subcommunities on Beehaw:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS
top 26 comments
sorted by: hot top controversial new old
[–] dick_stitches@lemm.ee 29 points 6 months ago (3 children)

In 30 years, we’re going to look back at this headline like we look back at articles about the internet or smart phones being fads.

[–] darkphotonstudio 40 points 6 months ago (1 children)

They are discussing a very specific approach and a paper that lays out the issues with pursuing this one specific type of generative AI. It's not about AI in general. The headline is a bit click-baity.

[–] sonori 4 points 6 months ago

While the paper demonstrated strong diminishing returns in adding more data to modern neural networks in terms of image classifers, the video host is explaining how the same may effect apply to any nureal network based system with modern transformers.

While there are technically methods of generative AI that don’t use a neural network, they haven’t made much progress in recent decades and arn’t what most people mean when they hear or say generative AI, and as such I would say the title is accurate enough for a video meant for a general audience, though “Is there a fundamental limit to modern neural networks” might be more technically correct.

[–] sexy_peach 22 points 6 months ago (1 children)
[–] dick_stitches@lemm.ee 14 points 6 months ago (2 children)

I think most people underestimate how big of a deal it’s going to be when this tech is pervasive in things like search engines or digital assistants. There are many times when I can’t figure out the right combination of words to put into a search engine to find the results. ChatGPT is already my go to when I want to figure out a movie or song from some random combination of foggy memories. Imagine after 10 more years of cpu/gpu innovations, and chat applications that have actually been designed for information retrieval, how much that is going to transform how we interact with data and information.

Full disclosure, I didn’t watch the video. I just can’t imagine that that headline isn’t going to look silly in 30 years.

[–] FreeFacts@sopuli.xyz 23 points 6 months ago (1 children)

Imagine after 10 more years of cpu/gpu innovations, and chat applications that have actually been designed for information retrieval, how much that is going to transform how we interact with data and information.

LLMs are going to change how we interact with data and information, but not the way you think. The AI-generated spam will ruin the whole concept of internet search completely. Only information that we can trust is going to be human-curated.

[–] jarfil 1 points 6 months ago

You will need an LLM to tell that apart, so... 🤷

[–] eleitl@lemmy.ml 10 points 6 months ago (1 children)

There are diminishing returns in semiconductor photolitho. Moore scaling is long over, absolute real estate see WSI with Cerebras, DC costs and power envelope are all sending a clear message. Quantization is there, so you can go from digital multipliers to analog and go spiking networks, but transformers and Co have little power there.

Also, the kind of economy that can carry Gen AI as business model is not a given, long term.

[–] jarfil 1 points 6 months ago (1 children)

Neuromorphic hardware is going to jump many orders of magnitude over classic hardware. When we get a RAM that can execute multiple layers in parallel at once, per clock tick, we'll see whole AI ecosystems cooperating to get a solution in a fraction of the time a single modern NN would take.

[–] eleitl@lemmy.ml 1 points 6 months ago (1 children)

Yes orders of magnitude, but not too many of them. The real estate of a 300 mm wafer is limited, the structure shrink is saturating and you can't get too many layers. You still need a packet switched network on the wafer even if the rest is mostly analog. Perhaps spintronics can limit the power requirements too.

[–] jarfil 1 points 6 months ago (1 children)

The orders of magnitude will come from the RAM running a whole layer at once in "a single clock", without the need for a processor to execute any of it. It's conceivable that multiple layers could be written/"programmed" into neuromorphic RAM, then a processor could just write the inputs, send an execute, move data from outputs to the next inputs, and repeat for all layers.

For example, an nVidia A100 goes up to 1,200 INT8 TOPS with 80GB of RAM at 1500MHz... but if the RAM could execute a neural network directly, that could raise it up to 80G*1.5G=120,000,000 INT8 TOPS, or 5 orders of magnitude.

[–] eleitl@lemmy.ml 2 points 6 months ago (1 children)

A free running cellular automaton (CA) approach in hardware would work, but each cell would be a much souped up SRAM cell, the interactions would be all local and 2D. Considering Cerebras is 40 G SRAM on the 300 mm WSI and is about at the cooling limit I'm afraid you do not have 5 orders of magnitude. Perhaps reversible spintronics can help with the power draw, but you still have to splat a higher dimensional network so not just local interactions into a 2D array.

[–] jarfil 1 points 6 months ago

Current research points to memristors, which can work both as memory cells, and as weights in a n×m grid representing a fully connected n->m layer that executes in 1 clock. I forgot which company was showing prototypes since pre-covid... and now Google is so full of wannabes that I can't seem to find it, oh well.

Cerebras is at the limit of SRAM, that's true.

Spintronics could be the next step, but seems to be way less ready for production.

Higher dimensionality would be nice, but even at 2D, being able to push multiple processes at once, through multiple n×m layers, would already give those 5 orders of magnitude, at least for inference. Since training also involves an inference step, it would speed that too, just not as much.

Self-training would be the next step after that... I don't think I've seen research in that regard, but maybe I've just missed it.

[–] anachronist@midwest.social 7 points 6 months ago

Alternate theory we'll look back the same way we looked back on the claims that IBM watson was intelligent, or the claims in the 60s, 70s, 80s, 90s, 2000s, 2010s, that was going to make computers truly intelligent.

[–] flora_explora 13 points 6 months ago

Great video, thanks! Regarding the over representation of certain concepts/things I have been disappointed from day one by generative AI. If you want it to draw you something obscure it miserably fails and tries to fall back on stuff it knows. Also all the discriminatory biases generative AI has about different people because of lacking data sets. It is very obvious that it cannot "outperform" its own data input (like the exciting curve in the video) but that it will rather stagnate.

[–] h3ndrik@feddit.de 10 points 6 months ago* (last edited 6 months ago)

I think that's a good question. And a nice video. The findings in the paper seem to arrive at that conclusion and we might need to find a better approach. Mind that (as he pointed out) it doesn't rule out growth in AI. It just hints at probable stagnation with the current methods. I'm already fascinated by the current tech and the new possibilities. But AI is really hyped as of now and I too, think we should take the claims of the big AI companies with a grain of salt. I'm sure the scientists at OpenAI are already concerned with exactly this as they do research for the next generations of ChatGPT. It's a bit of a bummer that lots of the research get's done behind closed curtains and we're going to have to wait for a bit longer to find out.

[–] jlow 9 points 6 months ago (2 children)

Can the next big thing please not be a cancer for humanity that further erodes human society?

[–] jarfil 11 points 6 months ago

No.

Whatever the next big thing is, money will pull in the scammers who will turn it into the next cancer.

It's always been like that.

[–] Kichae@lemmy.ca 2 points 6 months ago

If the shareholders can't capture all of the value for themselves, it's not going to catch on.

[–] emerald 5 points 6 months ago
[–] jarfil 3 points 6 months ago (2 children)

Rule of headlines? 🙄

No, it's not peaked out.

  • A simple path forward, is to go from classifying single elements of training data, to classifying multiple elements and their relationship in the training data.
  • Slightly less simple, is to gather orders of magnitude more data, by just hooking the input to an IRL robot.
  • Another step, is for the NN to control the robot and decide which parts of the data require refinement, and focus on that.

There is a lot of ways to improve data acquisition still on the table, it isn't going to stop at creating large corpora and having humans to fine-tune them.

[–] vrighter@discuss.tchncs.de 10 points 6 months ago* (last edited 6 months ago) (1 children)

this has "draw the rest of the fucking owl" vibes to it. especially step 3

[–] jarfil 1 points 6 months ago (1 children)

It's a "push as much data as a baby gets to train its NN" step, which is several orders of magnitude more, and more focused, than any training dataset in existence right now.

Even with diminishing returns, it's bound to get better results.

[–] vrighter@discuss.tchncs.de 1 points 6 months ago (1 children)

that's not how asymptotes work.

[–] jarfil 1 points 6 months ago

That's not how watching the video or reading the paper works either.

Whatever.

[–] anachronist@midwest.social 5 points 6 months ago

A simple path forward, is to go from classifying single elements of training data, to classifying multiple elements and their relationship in the training data.

Training data already has multiple labels.

Slightly less simple, is to gather orders of magnitude more data, by just hooking the input to an IRL robot.

An entire point of the paper and video is that massive increases in training set size are showing diminishing returns.

Another step, is for the NN to control the robot and decide which parts of the data require refinement, and focus on that.

🤡