this post was submitted on 03 Mar 2024
240 points (100.0% liked)

Climate - truthful information about climate, related activism and politics.

149 readers
19 users here now

Discussion of climate, how it is changing, activism around that, the politics, and the energy systems change we need in order to stabilize things.

As a starting point, the burning of fossil fuels, and to a lesser extent deforestation and release of methane are responsible for the warming in recent decades: Graph of temperature as observed with significant warming, and simulated without added greenhouse gases and other anthropogentic changes, which shows no significant warming

How much each change to the atmosphere has warmed the world: IPCC AR6 Figure 2 - Thee bar charts: first chart: how much each gas has warmed the world.  About 1C of total warming.  Second chart:  about 1.5C of total warming from well-mixed greenhouse gases, offset by 0.4C of cooling from aerosols and negligible influence from changes to solar output, volcanoes, and internal variability.  Third chart: about 1.25C of warming from CO2, 0.5C from methane, and a bunch more in small quantities from other gases.  About 0.5C of cooling with large error bars from SO2.

Recommended actions to cut greenhouse gas emissions in the near future:

Anti-science, inactivism, and unsupported conspiracy theories are not ok here.

founded 1 year ago
MODERATORS
 
top 50 comments
sorted by: hot top controversial new old
[–] hemko@lemmy.dbzer0.com 43 points 8 months ago (1 children)

Based on this chart, electric car is a best way to burn calories

[–] silence7@slrpnk.net 12 points 8 months ago (1 children)

If you're charging it with your own muscles, sure. Or you could just put rocks in your panniers.

[–] hemko@lemmy.dbzer0.com 7 points 8 months ago* (last edited 8 months ago) (1 children)

The joke is that calorie is a unit of energy, and it's the car that's "burning the calories" instead of your body

[–] nilloc@discuss.tchncs.de 2 points 8 months ago* (last edited 8 months ago)

This kills the ~~crab~~.

[–] will_a113@lemmy.ml 28 points 8 months ago (1 children)

Maybe the most surprising thing here is that regular biking is still twice as efficient as e-biking even given our mediocre metabolic efficiency and a physique that isn’t exactly designed for the bicycling motion.

[–] Rentlar@lemmy.ca 4 points 8 months ago

It makes sense to me...

For example if the the e-bike rider had to spend 1/5 of the energy of the unpowered cyclist (numbers chosen for the example's sake) that would be 1.1Wh/km they exert.

The remaining 12.9Wh/km would be what was discharged from the battery while riding (from using pedal assist and/or throttle features). This can be measured when you charge it back up at the end of the trip to the previous level.

[–] ryannathans@aussie.zone 16 points 8 months ago (6 children)

Let me just travel 30km to the shops by foot and carry shopping home another 30km back again

[–] stabby_cicada@slrpnk.net 12 points 8 months ago* (last edited 8 months ago) (6 children)

Have you heard of this miraculous thing called public transit? And there are things called panniers which are pretty cool too.

But frankly, if you don't have groceries within walking distance, your neighborhood and your zoning laws are very poorly designed.

And that's deliberate. Neighborhoods around the world are designed to require cars to live in, because of oil company lobbying, and also for "security", in order to keep out people too poor to own cars.

Getting rid of cars requires changing the various ways our cities are designed to make cars necessary. That's worth doing too.

[–] Allero@lemmy.today 9 points 8 months ago

Living outside land of the free, I have like 4 grocery stores and 1 supermarket within 15min walking distance, and I don't live in a dense neighborhood.

[–] ryannathans@aussie.zone 6 points 8 months ago

I don't live in a city.

[–] sonori 2 points 8 months ago (1 children)

In this graph a bus would be a lot worse than a far given the massive size, aerodynamic brick wall, and constant stops.

[–] Ismay@programming.dev 4 points 8 months ago (1 children)

Yeah but you have to divide the footprint by the average number of travelers.

load more comments (1 replies)
load more comments (3 replies)
[–] abuttandahalf@lemmy.ml 6 points 8 months ago (1 children)

That means the urban planning in your area is garbage. That is fixable and has to be fixed.

[–] ryannathans@aussie.zone 4 points 8 months ago (2 children)

Wouldn't go as far as calling it urban, it's a few streets on a mountain

[–] Marin_Rider@aussie.zone 3 points 8 months ago

there's always outliers. don't worry noone is saying you need to walk in those circumstances

[–] abuttandahalf@lemmy.ml 2 points 8 months ago

A few streets on a mountain can and should have a grocery store. For the occasional specialized needs, rural residents can use comparatively inefficient modes of transport because of their relatively small number. There's still a huge margin for better efficiency and planning.

load more comments (4 replies)
[–] SkyNTP@lemmy.ml 15 points 8 months ago* (last edited 8 months ago) (3 children)

Now do one where you A) normalize this to the same trip distance (not speed, so that these choices for a single trip become meaningfull) and B) convert the kWh into CO2 emissions, including the emissions in growing and transporting the various power and food production methods used (coal to solar, locally produced veggies-air shipped beef)

[–] vithigar@lemmy.ca 9 points 8 months ago* (last edited 8 months ago)

It's already normalized to distance, the graph is showing kWh/km. The speed is just there for additional context.

[–] WalrusDragonOnABike@reddthat.com 3 points 8 months ago

Trip distance is dependent on methods of transportation at the aggregate level. That's only relevant for policy decisions or collective actions, not individuals of course, but if we are going to deal with climate change, collective action is necessary.

Given the graph is normalized by km traveled, its overly generous to cars.

load more comments (1 replies)
[–] dylanmorgan@slrpnk.net 14 points 8 months ago (1 children)

This should be shown in Km/Wh so the more efficient the modes of travel show as bigger bars.

[–] JudahBenHur@lemm.ee 4 points 8 months ago

yes, I thought it was backwards and was quite surprised

[–] perestroika@slrpnk.net 13 points 8 months ago* (last edited 8 months ago) (2 children)

The car is correctly represented, about 0.15 KWh / km is what one gets.

However, the positioning of the e-bike looks strange to me. I've looked at previous studies and the e-biker has always been first in efficiency - because the efficiency of a motor far exceeds the efficiency of human digestion and muscles, while weight and speed remain comparable to an ordinary cyclist.

I think someone has calculated food energy incorrectly, or assumed that e-bikes move faster than they do. :)

[–] tunetardis@lemmy.ca 5 points 8 months ago (1 children)

I guess it's hard to gauge an e-bike since they often have a variety of operating modes ranging from progressively higher levels of pedal assist up to full throttle. But that's fascinating to think that an all-electric ride may actual consume less energy in the grand scheme of things. I had never looked at it that way!

[–] Sadbutdru@sopuli.xyz 2 points 8 months ago (1 children)

It is interesting, but remember we need food to live anyway, and we need exercise to stay healthy. If we ask used ebikes on max pedal assist to get around, but then go to the gym and pound the treadmill for an hour, what does that do to the numbers? Or if we eat less and burn less energy, but then lose bone density and need more healthcare as we age (just one effect among many of not getting enough exercise)?

load more comments (1 replies)
[–] oktoberpaard@feddit.nl 2 points 8 months ago* (last edited 8 months ago) (1 children)

I think many people peddle just as hard on an electric bike, so the 5.5 kWh/km is a given, the rest is the energy required to go faster. Since air resistance increases with the square of the speed, it might very well be the case that 14 kWh/km at 25 km/h is more efficient than what the human alone would need to deliver for the same speed.

Edit: I failed to take into account that for the human at the same level of effort the power remains constant, not the energy per kilometer. Going faster at the same power output would reduce the energy expenditure per kilometer for the human to about 4 kWh/km, which would indicate that 10 kWh/km is being delivered by the motor to go faster.

That being said, it might be the case that they just calculated the energy needed to move the bicycle without taking the energy efficiency of the digestive system into account.

[–] bob_lemon@feddit.de 3 points 8 months ago (1 children)

I just did a quick of my statistics. My bike typically provides an average of 100W in my hilly 28km commute (both ways) that takes about 1h15 minutes. That's less than 5Wh/km.

I'm using a fairly high setting, too, and judging by the fact that I don't break a sweat at all, I'm 100% sure I'm not pedaling as hard as I do on a regular bike.

[–] oktoberpaard@feddit.nl 1 points 8 months ago

If my calculations are right, at that speed with the numbers from the graph, that would put the energy requirement at about 10 kWh/km. That means that with your motor delivering half of that, the human output actually matches up pretty well with the graph. I’m saying output, because I’m convinced that the graph doesn’t take the calories being burned into account and only shows the work being done to move the bicycle.

[–] bjorney@lemmy.ca 12 points 8 months ago* (last edited 8 months ago) (2 children)

Energy efficiency and carbon footprint are very different things - pretty sure the carbon footprint of 15 big macs (8500kcal) is substantially greater than 1L of gasoline (let alone an electric grid equivalent)

[–] Killing_Spark@feddit.de 4 points 8 months ago* (last edited 8 months ago) (1 children)

A quick googling tells me a burger is about 3kg of CO2 equivalents. 1L of gas seems to be about 2,5kg.

Now if you were to eat local and seasonal food I'd guess you can get more efficient than burning oil.

Edit: As @bjorney correctly pointed out a quick google in the morning, before the brain functions properly kick in, isn't the best way to produce comments on numbers. I did NOT account for the factor of about 15 that a burger needs to get close the energy stored in a liter of gasoline.

Edit to the edit: Just out of curiosity I did another quick google (please brain, be functioning now) and it seems that to get 8500kcal from oats you need about 2,5kg. This seems to produce about 1kg of co2 equivalents. I am certain that this does not include the amount of co2 the human is expelling in excess by using their muscles instead of a motor, so the whole discussion is probably moot anyways.

[–] bjorney@lemmy.ca 2 points 8 months ago (1 children)

that's one burger, you would need at least a dozen burgers (14.2 big macs) to match a liter of gasoline (8340 kcal)

[–] Killing_Spark@feddit.de 1 points 8 months ago* (last edited 8 months ago) (1 children)

Damn, my brain got way to happy about the numbers being so close that I completely overlooked that. I'm gonna defend myself by saying that this was early in the morning ;)

Edited my original comment to reflect this fact.

load more comments (1 replies)
load more comments (1 replies)
[–] fmstrat@lemmy.nowsci.com 11 points 8 months ago (1 children)

While I like this chart, it's useless without the tradeoff. It also needs to map speed to time spent. What is being given up for improved efficiency? The inflection point is how you move people from point A to point B.

[–] silence7@slrpnk.net 12 points 8 months ago

The biggie is urban planning to ensure that people don't need to travel huge distances on a routine basis. That means that people give up very little.

[–] tunetardis@lemmy.ca 11 points 8 months ago

Interesting. I've never owned an electric car, but just guesstimating based on those numbers, my daily commute would cost something like 25 cents in electricity. Not too shabby.

I did buy an ebike a few years back and watched to see how much the bill went up, but frankly never noticed any change. At 2 cents per day, it's basically a rounding error relative to other electrical usage, so that makes sense to me now.

[–] Dippy 9 points 8 months ago

This should include gas cars too which are ungodly inefficient

[–] Colour_me_triggered@lemm.ee 7 points 8 months ago (3 children)

Cool, now do the same chart but instead of energy use time.

[–] Zacryon@feddit.de 10 points 8 months ago (1 children)

Time efficiency in a modern urban area optimized for public transport and non-motorized transport modes compared to time efficiency in current typical urban areas, which are focused on individual motorized transport modes with severe lack of public transport:

[Fancy chart: first case left, second case right]

[Good] [Bad]

load more comments (1 replies)
[–] Dippy 5 points 8 months ago

Time us is so heavily dependent on location you cant standardize the data effectively

load more comments (1 replies)
[–] Zacryon@feddit.de 6 points 8 months ago (1 children)

Thanks a lot for linking the source!

[–] silence7@slrpnk.net 3 points 8 months ago

you're welcome. It's something I try to do routinely.

[–] Swarfega@lemm.ee 5 points 8 months ago

EBikes are awesome. I live in a hilly area where riding is tough. EBikes allows people of all ages and abilities to get out. Even with the assistance you still burn calories... as long as it's assisted peddling and not the illegal bikes I see delivery guys riding.

I ride road bikes but when I get older and less capable I'll certainly invest in an ebike.

[–] corymbia@reddthat.com 5 points 8 months ago (3 children)

Yeah but what about if a person is a massive hambeast? Ain’t no cycles going nowhere under that strain.

Or what if they are a massive douchenozzle chud fuckwit?!? It would emasculate them to not have the largest most unnecessary truck possible?!?

load more comments (3 replies)
[–] Scrof@sopuli.xyz 4 points 8 months ago (3 children)
[–] thatsnothowyoudoit@lemmy.ca 8 points 8 months ago (4 children)

I believe most e-bikes in Europe are limited to 25km/h. 32km/h in Canada.

load more comments (4 replies)
[–] driving_crooner@lemmy.eco.br 2 points 8 months ago

Mine goes up to 35 km/h when is freshly charged, down 75% of battery to 30 km/h.

load more comments (1 replies)
[–] anivia@lemmy.ml 2 points 8 months ago (3 children)

Keep in mind that although an electric bike might use more energy input than a regular road bike, it uses a much cleaner type of fuel. Even the most dirty coal power plant in the world has a significantly lower CO2 output per watt hour than the food you are eating to power a bicycle. Even if you are vegan

[–] Minnels@lemm.ee 1 points 8 months ago

We should probably just stop eating.

load more comments (2 replies)
load more comments
view more: next ›