this post was submitted on 18 Dec 2023
11 points (100.0% liked)

Advent Of Code

20 readers
1 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 18: Lavaduct Lagoon

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] sjmulder@lemmy.sdf.org 2 points 1 year ago* (last edited 1 year ago) (1 children)

C

Fun and interesting puzzle! In part 1 I fumbled a bit trying to implement even/odd outside/inside tracking before realizing that wouldn't work for this shape and just did the flood fill.

For part 2 I correctly guessed that like the intersecting cuboids (2021 day 22) it would be about finding a better representation for the grid or avoiding representing it entirely. Long story shorter:

/*
 * Conceptually: the raw map, which is too large to fit directly in
 * memory for part 2, is made much smaller by collapsing (and counting)
 * identical rows and columns. Another way to look it at is that a grid
 * is fitted to make 'opaque' cells.
 *                                           |   |#|##|#
 * For example:                             -+---+-+--+-
 *                                          #|###|#|  |#
 *       ####               ### 1           -+---+-+--+-
 *   #####  #             ### # 1           #|   | |  |#
 *   #      #   becomes   #   # 2     or:   #|   | |  |#
 *   #      #             ##### 1           -+---+-+--+-
 *   ########             13121             #|###|#|##|#
 *
 * To avoid a lot of complex work, instead of actually collapsing and
 * splitting rows and columns, we first generate the wall rectangles and
 * collect the unique X and Y coordinates. Those are locations of our
 * virtual grid lines.
 */

Despite being quite happy with this solution, I couldn't help but notice the brevity and simplicity of the other solutions here. Gonna have a look what's happening there and see if I can try that approach too.

(Got bitten by a nasty overflow btw, the list of unique X coordinates was overwriting the list of unique Y coordinates. Oh well, such is the life of a C programmer.)

https://github.com/sjmulder/aoc/blob/master/2023/c/day18.c

[โ€“] lwhjp@lemmy.sdf.org 1 points 1 year ago

Oh, just like day 11! I hadn't thought of that. I was initially about to try something similar by separating into rectangular regions, as in ear-clipping triangulation. But that would require a lot of iterating, and something about "polygon" and "walking the edges" went ping in my memory...