this post was submitted on 25 Aug 2023
11 points (100.0% liked)

Ask Electronics

63 readers
1 users here now

For questions about component-level electronic circuits, tools and equipment.

Rules

1: Be nice.

2: Be on-topic (eg: Electronic, not electrical).

3: No commercial stuff, buying, selling or valuations.

4: Be safe.


founded 1 year ago
MODERATORS
 

I am powering a 5V microcontroller (arduino clone, atmega328p) using a 9V block and a buck converter. Now I want to let the microcontroller occasionally measure the battery voltage, so I can get an idea of how full it is.

My first idea was to use a simple voltage divider:

I've chosen the resistor values so that:

  • the voltage at the measure output is < 1.1V, to be able to use the 1.1V internal reference of the atmega's ADC
  • R1 || R2 < 10kΩ, since the atmega datasheet says "The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or less"

This is great and all, but what bothers me is that this circuit will constantly draw ~100µA from the battery.

So, my next thought was to add a mosfet to the divider, to switch it on only while measuring:

This is obviously bad, because now when the mosfet is off, the ADC input sees the whole battery voltage.

To address that issue, I've added a second mosfet into the measure path:

This works, and it does not draw any current, except while measuring.

However, it's quite a few parts. So I'm curious if anyone has an idea how to do this with just a single mosfet. It seems to me like it should be possible, but I haven't figured out how.

Oh, and if I'm doing something stupid here, please tell me :)

you are viewing a single comment's thread
view the rest of the comments

@nilclass

@WaterWaiver

From the stack exchange post: " 10 kΩ or less source resistance is recommended, otherwise the low pass filter effect of the capacitor with the source resistance becomes a major issue, requiring a longer sampling time for conversion and as a result limiting the maximum frequency."

In other words: a higher source impedance (caused by large resistors) is only going to drastically affect the results when you need to take fast repeated measurements (e.g. an AC source)