ich_iel
Die offizielle Zweigstelle von ich_iel im Fediversum.
Alle Pfosten mĂŒssen den Titel 'ich_iel' haben, der Unterstrich darf durch ein beliebiges Symbol oder Bildschriftzeichen ersetzt werden. Ihr dĂŒrft euch frei entfalten!
đ± Empfohlene Schlaufon-Applikationen fĂŒr Lassmich
Befreundete Kommunen:
Regeln:
1. Seid nett zueinander
Diskriminierung anderer Benutzer, Beleidigungen und Provokationen sind verboten.
2. Pfosten mĂŒssen den Titel 'ich_iel' oder 'ich iel' haben
Nur Pfosten mit dem Titel 'ich_iel' oder 'ich iel' sind zugelassen. Alle anderen werden automatisch entfernt.
Unterstrich oder Abstand dĂŒrfen durch ein beliebiges Textsymbol oder bis zu drei beliebige Emojis ersetzt werden.
3. Keine HochwÀhl-Maimais oder (Eigen)werbung
Alle Pfosten, die um HochwĂ€hlis bitten oder Werbung beinhalten werden entfernt. Hiermit ist auch Eigenwerbung gemeint, z.b. fĂŒr andere Gemeinschaften.
4. Keine BildschirmschĂŒsse von Unterhaltungen
Alle Pfosten, die BildschirmschĂŒsse von Unterhaltungen, wie beispielsweise aus WasistApplikaton oder Zwietracht zeigen, sind nicht erlaubt. Hierzu zĂ€hlen auch Unterhaltungen mit KIs.
5. Keine kantigen BeitrÀge oder Meta-BeitrÀge
ich_iel ist kein kantiges Maimai-Brett. Meta-BeitrĂ€ge, insbesondere ĂŒber gelöschte oder gesperrte BeitrĂ€ge, sind nicht erlaubt.
6. Keine ĂberfĂ€lle
Wer einen Ăberfall auf eine andere Gemeinschaft plant, muss diesen zuerst mit den Mods abklĂ€ren. Brigadieren ist strengstens verboten.
7. Keine Ă40-Maimais
Maimais, die es bereits in die WasistApplikation-Familienplauderei geschafft haben oder von RĂŒdiger beim letzten Stammtisch herumgezeigt wurden, sind besser auf /c/ichbin40undlustig aufgehoben.
8. ich_iel ist eine humoristische Plattform
Alle Pfosten auf ich_iel mĂŒssen humorvoll gestaltet sein. Humor ist subjektiv, aber ein Pfosten muss zumindest einen humoristischen Anspruch haben. Die AtmosphĂ€re auf ich_iel soll humorvoll und locker gehalten werden.
9. Keine Polemik, keine KöderbeitrÀge, keine Falschmeldungen
BeitrĂ€ge, die wegen Polemik negativ auffallen, sind nicht gestattet. Desweiteren sind Pfosten nicht gestattet, die primĂ€r Empörung, Aufregung, Wut o.Ă. ĂŒber ein (insbesonders, aber nicht nur) politisches Thema hervorrufen sollen. Die Verbreitung von Falschmeldungen ist bei uns nicht erlaubt.
Bitte beachtet auch die Regeln von Feddit.de
Ich möchte mich da nicht zu sehr aus dem Fenster lehnen, aber ich tippe ja darauf, dass das schon widerlegt war, als er es gelehrt hat.
Ihr hÀttet Religionsunterricht?
lacht mit Schulfach Ethik
*widerlegt
Meistens regen sich genau die Richtigen ĂŒber Schule auf :D
Manche Leute haben eine Lese-/RechtschreibschwÀche.
Gleich mal meinen ehemaligen Prof anklingeln.
Editierung: er fand's wohl unkĂŒhl um die Uhrzeit, vielleicht war es aber auch nur ein Vorwand um nicht blöd dazustehen.
ImaginÀre Zahlen waren schon sehr sehr lange Bestandteil der Elektrotechnik.
Aber mit der viel cooleren imaginÀren Einheit j, nicht dieses komische i Gedöns
Ich sag Kartoffel, du sagst Erdapfel ...
Mancher sagt auch Pferdeapfel
Darf man ja, wir leben in einem freien Land mit Redefreiheit und so
Nimm einfach Quaternionen fĂŒr alles, dann hast du i, j und k.
Komplexe Zahlen sind toll. Unser Mathelehrer hat uns nur davon erzÀhlt, weil's cool ist.
Beim vermitteln von Themen geht man immer von vereinfachten Modellen aus, deswegen fĂ€ngt man mit physikalischen Berechnungen auch an ohne den Luftwiderstand zu berĂŒcksichtigen. Nennt sich Didaktik.
Ich weiĂ. Trotzdem will ich da mal seine Meinung zu wissen.
VerstÀndlich
Die Komplexen Zahlen sind auch nur eine Untermenge der reellen 2x2 Matrizen, also lassen sich zumindest so darstellen.
Wenn jemand also behauptet, das es die komplexen Zahlen nicht gibt, sollte man ihn mal Fragen, ob es ĂŒberhaupt die reelen oder ganzen Zahlen gibt.
Sogar bei den natĂŒrlichen Zahlen kann man streiten, weil 3 existiert eben auch nicht physikalisch. Nur 3 Ăpfel beispielsweise.
Zahlen waren schon immer nur Werkzeuge, die weder richtig/falsch oder existent/nicht existent sein können. Die konkreten Konzepte und Ideen dahinter sind das entscheidende. Wie man diese dann darstellt ist nur nebensÀchlich.
Warum 2x2? Du brauchst doch nur 2 Dimensionen fĂŒr Real- und ImaginĂ€rteil, also im Grunde einen Vektor. Ist doch der zweidiminesionale Raum.
Wenn ich mich richtig erinnere, lassen sich komplexe Zahlen so auf 2x2-Matrizen abbilden, dass sowohl Addition als auch Multiplikation der Matrizen wieder die korrekten komplexen Zahlen darstellen, was mit einem Vektor nicht so direkt möglich ist. Dadurch verhalten sich 2x2-Matrizen in vielen FÀllen genau wie komplexe Zahlen.
Was sind denn die komplexen Zahlen die sich "so auf 2x2 Matrizen abbilden" lassen? Da muss doch vorher was konstruiert worden sein was die Bildmenge ist welche nun mit einem Isomorphismus in die reellen 2x2 Matrizen abgebildet wird.
Die Standardkonstruktion nimmt den R^2^ und verstattet ihn mit einer Multiplikation um die komplexen Zahlen zu konstruieren. Das ist ein zweidimensionaler Körper.
du brauchst 2x2-Matrizen, damit du sie auch wie komplexe Zahlen miteinander multiplizieren kannst. Eine komplexe Zahl z= a +bi wird dann dargestellt als die 2x2-Matrix
z = (a, -b; b, a) Wenn man zwei solche Matrizen multipliziert, sieht man, dass sich diese Multiplikation genau so wie die Multiplikation von komplexen Zahlen verhĂ€lt. Das ganze ist ĂŒbrigens im Prinzip dasselbe wie der SO(2) zu U(1)-Isomorphismus. Also ja, ich weiĂ auch nicht, was dieser Artikel soll - man kann komplexe Zahlen immer durch reelle 2x2-Matrizen ersetzen.
So ein KÀse, die Standardherleitung der komplexen Zahlen ist der R^2^ mit entsprechender Multiplikation und Addition keine Matrizen vonnöten, siehe z.B. Rudin.
Ganz streng genommen kannst du auch vektoren miteinander multiplizieren. Sind ja schliesslich 1x2 oder 2x1 Matrizen je nachdem wie du sie drehst. Nennt man inneres bzw. Ă€uĂeres Produkt je nachdem wierum du sie aufstellst.
Ja, du kannst natĂŒrlich auch den R^2 nehmen und eine custom Multiplikation drauf definieren - das ist, wie es standardmĂ€Ăig gemacht wird. Mein Punkt war, dass eine bestimmte Unteralgebra der 2x2 reellen Matrizen mit der Standard-Matrixmultiplikation eine den komplexen Zahlen isomorphe Algebra bilden.
Und nein, das innere und Ă€uĂere Produkt sind fĂŒr diesen Zweck nicht geeignet, da sie weder geschlossen oder assoziativ noch invertierbar sind. Wenn du ein Vektorprodukt definieren willst, dass sich u.U. so wie die komplexe Multiplikation verhĂ€lt, schau dir mal Doran, Lasenby: Geometric Algebra for Physicists an. Dieser Ansatz verallgemeinert sich mit der Benutzung der geraden Unteralgebra der geometrischen Algebra des Raumes Cl(3) ĂŒbrigens hervorragend auf Quaternionen, und mit der Raumzeit-Algebra Cl(1, 3) auf bikomplexe Zahlen.
Die komplexen zahlen sind ein körper, die 2x2 â-matrizen nicht.
Also untermenge nur im mengentheoretischem sinne aber sie haben stÀrkere algebraische eigenschaften.
Die gesamten 2x2 R Matrizen nicht, aber es gibt eine Untermenge die ein Körper ist und isomorph zu C. NÀmlich alle die sich durch Linearkombination der Einheitsmatrix und der Rotationsmatrix um 90° ergeben.
Also a+ib ~ [[a, -b],[b,a]]
https://math.stackexchange.com/questions/1028371/complex-number-isomorphic-to-certain-2-times-2-matrices#2644514
Das meinte ich mit "untermenge nur im mengentheoretischem sinne aber nicht im algebraischen". Ganz streng genommen nÀmlich nicht mal im mengentheoretischen Sinn da der aus [[1,0],[0,1]] und [[0,-1],[1,0]] generierte Körper zwar isomorph zu den komplexen Zahlen ist, aber halt nicht die komplexen Zahlen ist.
Ja das stimmt, da hab ich aus der Physik kommend zu anwendendunsorient gedacht.
Aber fĂŒr die Frage ob komplexe zahlen gebraucht werden, reicht es, eine isomorphe alternative zu haben. Die komplexen Zahlen haben auch nicht mehr mit Quantenmechanik zu tun wie die Matrizen, nur sind sie leichter handzuhaben.
Das stimmt, der Grund warum ich da so pedantisch bin ist weil viele MatheanfĂ€nger "Untermenge" oder "Untergruppe" o. Ă€. Begriffe mit "Ă€hnlich" im Sinne von vererbten Strukturen assoziieren. Mit der Hoffnung wenn sie die "gröĂere" Struktur verstehen sich die Unterstruktur besser verstehen lĂ€sst. Ein sehr sehr sehr hĂ€ufiger Trugschluss, die Elemente sind komplett unwichtig weswegen man ja was isomorph zueinander ist nicht wirklich unterscheidet und man durchaus von den "komplexen Zahlen als Untermenge der 2x2 Matrizen" spricht.
Die Operationen und welche Axiome sie erfĂŒllen sind das was letzlich zĂ€hlt und hier schlĂ€gt die Algebra einem immer wieder quer.
Was bringt dir dein Lehrer denn bei? Reelle Quantenmechanik hab ich noch nie gesehen
Solche Sachen wie LĂ€ngenkontraktion und Zeitdilatation waren dabei, genauso wie halt auch due Grundlagen der Quantenphysik.
Solche Effekte kannst du aber auch problemlos mit reellen Zahlen beschreiben. Zumindest die Beispiele, die man in der Schule rechnet.