this post was submitted on 15 Dec 2023
56 points (100.0% liked)

Technology

37735 readers
45 users here now

A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.

Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.

Subcommunities on Beehaw:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] ExLisper@linux.community 4 points 11 months ago (1 children)

It's not that it's not science. Different sciences simply define intelligence in different ways. In psychology it's mostly the ability to solve problems by reasoning so 'human like' intelligence. They don't care that computers can solve the same problems without reasoning (by brute force for example) because they don't study computers. In computer science it's more fuzzy but pretty much boils down to algorithms solving problems by using some sort of insights that are not simple step-by-step instructions. The problem is that with general AI we're trying to unify those definitions but when you do this both lose it's meanings.

[–] 0ops@lemm.ee 1 points 11 months ago* (last edited 11 months ago)

You're right, it's very much context dependent, and I appreciate your incite on how this clash between psychology and computer science muddies the terms. As a CS guy myself who's just dipping my toes into NN's, I lean toward the psychology definition, where intelligence is measured by behavior.

In an artificial neural network, the algorithms that wrangle data and build a model aren't really what makes the decisions, they just build out the "body" (model, generator functions) and "environment" (data format), so to speak. If anything that code is more comparable to DNA than any state of mind. Training on data is where the knowledge comes from, and by making connections the model can "reason" a good answer with the correlations it found. Those processes are vague enough that I don't feel comfortable calling them algorithms, though. It's pretty divorced from cold, hard code.